
The	diamond	problem:	multiple	inheritance	

Google “diamond problem” and you will get a bunch of websites that talk about the diamond
problem in OO languages, showing a diamond like that drawn to the right. It shows classes or inter-
faces (Java terminology) A, B, C, and D, with (1) B and C extending or implementing A and (2) D ex-
tending or implementing both B and C. The diamond problem has to do with multiple inheritance. If
both B and C declare a method m and D calls m, which method should be called, the one in B or the one
in C? This question has to be answered in some unambiguous way.

Multiple inheritance is an issue not just in Java but in many OO languages like C++, Common Lisp, C#, Eiffel,
Go, OCaml, Perl, Python, Ruby, and Scala. Each OO language solves the ambiguity in some way.

We show you how Java handles the diamond problem in Java, talking a bit about its history. For
many Java cases, it’s not a diamond problem, it’s a Vee problem. Only B, C, and D are needed to
explain some issues. At the end, we show you a diamond problem.

1. B, C, and D are classes

The program to the right is not a legal Java program because class
D may extend only one class, and here it extends both B and C. But if it
were legal, it would be ambiguous because in class D, it is not known
which method m to call, the one inherited from class B or the one inher-
ited from class C. Java avoids the multiple inheritance problem for
classes by allowing a class to extend only one other class.

2. B, C are interfaces and D is a class, in version 7 or less

Class D can implement many interfaces. To the right, it imple-
ments both B and C. Further, in Java 7 and earlier, all methods in an
interface are abstract, and any non-abstract class that implements the
interface must override interface’s abstract methods. The interface
defines only the syntax of calls on a method, so there is no ambiguity.

3. B and D are classes and C is an interface, in version 7 or less

To the right, class B declares method m and interface C declares
abstract m. Since D inherits m from B, D need not declare m again; it is
already available. There is no ambiguity here because interface C de-
fines only the syntax of calls on m.

Suppose B does not declare m to be public. Then there is a syntax
error: inherited method m cannot hide public abstract method m in C.
There is a choice: either have m in B be public or declare public meth-
od m in D.

4. Default interface methods in Java version 8

Version 8 of Java, released in Spring 2014, allowed default
methods in interfaces, as shown to the right. Since interface C has a
default method m, class D does not have to override m; if it doesn’t,
the default method is used.

Ah, but now we have a problem. With the classes and interfac-
es shown to the right, what method m will be called in method D.p?
The one in class B or the one in interface C?

For backward compatibility (a Java 7 program should run in
Java 8) the Java designers ruled that the method in B should be
called: the superclass has precedence over the interface.

A	

D	

B	 C	

D	

B	 C	

class B { int m() {return 0;} }
class C { int m() {return 1;} }
class D extends B, C {
 void p() {System.out.println(m());}
}. // not legal Java

interface B { int m(); }
interface C { int m(); }
class D implements B, C {
 void p() {System.out.println(m());}
 public int m() {return 5;}
}

class B { public int m() {return 0;} }
interface C { int m(); }
class D extends B implements C {
 void p() {System.out.println(m());}
}

interface C { default int m() {return 1;}}

class D implements C {
 void p() {System.out.println(m());}
}

class B { public int m() {return 0;} }

interface C { default int m() {return 1;}}

class D extends B implements C {
 void p() {System.out.println(m());}
}

The	diamond	problem:	multiple	inheritance	

5. How does one call the interface default method?

In method D.p, how does one call inherited default method
C.m? Use C.super.... to designate the implemented interface C
whose method is to be called:

 C.super.m();

Here, there is no ambiguity. In method p, a call m() calls method m
in inherited from class B, and a call C.super.m() calls default
method m inherited from interface C.

6. No class extension, no multiple interfaces with a default

If class D does not extend a class and implements two inter-
faces that both have a default method m, as shown to the right,
the program has a syntax error and won’t compile. Even if
method m in one of the interfaces is abstract, it’s still a syntax
error.

7. With a class extension, multiple interfaces with de-
faults are OK

In the program to the right, D extends class B and im-
plements interfaces C1 and C2. All three of them —B, C1,
and C2— declare method m. The return statement in meth-
od D.p shows how to call all three of the inherited meth-
ods.

8. Example of backward compatibility

One reason to prefer a method in the superclass over the default
method in the interface is to maintain backward compatibility. Here’s
one example of why this choice was made. In Java 7, interface java.
util.List had no abstract method to sort a list. In Java 8, to make life
easier for programmers, this default method was to interface List:

 default void sort(Comparator<? super E> c)

It can be used to sort any List. For the Java 7 program shown on the
right to work as it did in Java 7, B.sort had to be called from method
p, even though List has a default method sort.

9. A diamond problem

The program to the right has the A-B-C-D diamond. We discuss
variations of it. It might help to try these out in DrJava, calling
methods from the Interactions Pane.

1. The program compiles, and execution of method p in D prints 1.
The call on m can be replaced by B.super.m () and C.super.m ().

2. Put this method in B: default int m() { return 2; }.
The program remains legal. A call of method p in D prints 2 —the declaration in B overrides that in A. You can use
B.super.m ()in method p, but C.super.m () won’t work —it results in the error message: bad type qualifier C in de-
fault super call method m() is overridden in B.

3. Put this method in both B and C: default int m () { return 2; }. The program is syntactically incorrect. The
error message is: class D inherits unrelated defaults for m() from types B and C.

4. Put this abstract method in B: int m(); . You get a syntax error; D does not override this abstract method.

class B {
 …
 public void sort(…) {…}
 …
}
class D extends B implements List {
 void p() {… sort(…); … }
}

class B { public int m() {return 0;} }

interface C { default int m() {return 1;}}

class D extends B implements C {
 void p() {
 System.out.println(C.super.m());
 }
}

interface C1 { default int m() {return 1;}}
interface C2 { default int m() {return 2;}}
class D implements C1, C2 {
 …
} // syntax error: won’t compile

class B { public int m() {return 0;} }
interface C1 {default int m() {return 1;} }
interface C2 {default int m() {return 2;} }
class D extends B implements C1, C2 {
 public int p() {
 return m() + C1.super.m() + C2.super.m();
 }
}

interface A {default int m() {return 1;} }
interface B extends A { }
interface C extends A { }
class D implements B, C {
 void p() { System.out.println(m());}
}

