
Joins

Agenda

Problem Statement
1.​ Joins

a.​ INNER
b.​ LEFT
c.​ RIGHT
d.​ FULL OUTER

__​

Problem Statement:
You are a Data Analyst at Amazon Fresh. You have been tasked to study
the Farmer’s Market.

Dataset: Farmer’s Market database

__

So far…

●​ You have learned to select data from a single database table and
filter to the rows you want.

●​ But you might wonder what to do if the data you need exists
across multiple related tables in the database.

Question: Get details of all vendors selling products along
with the name of each product they sell and the quantity
of that product present in their inventory?

Intuition:

Now, what tables do we require?

1.​ to get the vendor details like vendor name & type - the vendor
table.

2.​ to get the details about each specific item, including product
name & size - the product table.

3.​ to find out the quantity of the product for each vendor - the
vendor_inventory table.

So you need all this combined information from 3 tables here.

This is where SQL JOINs come in.

Solution Query:

SELECT
v.vendor_name, v.vendor_type
p.product_name, p.product_size
vi.quantity

FROM farmers_market.vendor v
JOIN farmers_market.vendor_inventory vi
 ON v.vendor_id = vi.vendor_id
JOIN farmers_market.product p
 ON vi.product_id = p.product_id
ORDER BY v.vendor_name;

Note that ER Diagrams are crucial in identifying which tables we can
join and which key fields connect them.

Question: List all the products along with their product
category name.

Since only the ID of the product category exists in the product table,
and the product category’s name is in the product_category table,

We have to combine the data in the product and product_category
tables together to generate this list.

●​ The figure shows the one-to-many relationship between these
tables.

●​ Their primary keys are each identified with an asterisk and the
foreign key with a double asterisk.

●​ Each row in the product_category table can be associated with
many rows in the product table, but each row in the product table
is associated with only one row in the product_category table.

●​ The fields that connect the two tables are
product_category.product_ category_id and
product.product_category_id.

Now, there are multiple ways of joining these tables.

Instructor Note: [You can pick your own example or watch the lecture
to understand how to explain Joins]

Syntax for joining tables:

SELECT [columns to return]
FROM [left table]
[JOIN TYPE] [right table]
ON [left table].[field in left table to match] = [right table].[field in
right table to match]

Order of Execution of a SQL query:

●​ FROM - The database gets the data from tables in FROM clause and if
necessary, performs the JOINs.

●​ JOIN - Depending on the type of JOIN used in the query and conditions
specified for joining the tables in the ON clause, the database engine
matches rows from the virtual table created in the FROM clause.

●​ WHERE - After the JOIN operation, the data is filtered based on the
conditions specified in the WHERE clause. Rows that do not meet the
criteria are excluded.

●​ GROUP BY - If the query includes a GROUP BY clause, the rows are
grouped based on the specified columns and aggregate functions are
applied to the groups created.

●​ HAVING - The HAVING clause filters the groups of rows based on the
specified conditions

●​ SELECT - After grouping and filtering is done, the SELECT statement
determines which columns to include in the final result set.

●​ ORDER BY - It allows you to sort the result set based on one or more
columns, either in ascending or descending order.

●​ OFFSET - The specified number of rows are skipped from the beginning
of the result set.

●​ LIMIT - After skipping the rows, the LIMIT clause is applied to restrict
the number of rows returned.

Question: Get a list of customers' zip codes for customers
who made a purchase on 2019-04-06.

Will you need a join here?​
What type of join are we going to use here?

If we need zip codes of all the customers who made a purchase, we only
require an intersection of customers whose details are present in the
customer tables.

Inner JOIN

An INNER JOIN only returns records that have matches in both tables.

Query:

SELECT
DISTINCT cp.customer_id,
c.customer_zip

FROM farmers_market.customer c
INNER JOIN farmers_market.customer_purchases cp
ON cp.customer_id = c.customer_id
WHERE

cp.market_date='2019-04-06';

Breaking down Inner JOIN :

●​ An inner join is a type of join in SQL that returns only the rows
from both tables that have matching values in the specified
columns.

●​ In this case, the inner join is performed on the "customer" and
"customer_purchases" tables using the "customer_id" column as
the matching column.

●​ The "INNER JOIN" clause specifies that we want to retrieve only
the rows that have matching values in both tables. In other words,

we only want to retrieve the details of customers who have made
a purchase on the specified date.

●​ The "ON" clause specifies the condition for the join. In this case, we
want to match the "customer_id" column in both tables. By
joining on this column, we can link each purchase to the
corresponding customer.

●​ Once the join is performed, we can retrieve the zip codes of the
customers who made a purchase on the specified date by
selecting the "customer_zip" column from the "customer" table.

●​ The "DISTINCT" keyword is used to ensure that we only get one
row per customer, even if they made multiple purchases on the
specified date.

__

Quiz - 1

Q. Both of the queries will give the same result.

●​ Select t1.*, t2.* from DB.tbl1 t1 join DB.tbl2 t2 on t1.col1 =
t2.col1

●​ Select t1.*, t2.* from DB.tbl2 t2 join DB.tbl1 t1 on t2.col1 =
t1.col1

a)​True-correct
b)​False

Keyword: Both of the queries
Select Instructor: Sai Nischitha Thatha
__

Left JOIN

This tells the DBMS to pull all records from the table on the “left side” of
the JOIN, and only the matching records (based on the criteria specified
in the JOIN clause) from the table on the “right side” of the JOIN.

Question: As per our question we want to list ALL the products and
their product categories.

Ques. Which table should we use as the left table if we use LEFT JOIN?
Ans: The product table should be on the left and product_categories
should be on the right.

Actual Query:

SELECT * FROM
farmers_market.product
LEFT JOIN farmers_market.product_category

 ​ ON product.product_category_id =
product_category.product_category_id

NOTE: You may have noticed two columns called product_category_id
in the output.

That is because we selected all fields using the asterisk(*), and there
are fields in both tables with the same name.

To remedy this, we could either specify the list of fields to be
returned and only include the product_category_id from one of the
tables or alias the column names to indicate which table each came
from.

Query:

SELECT
p.product_id,
p.product_name,
pc.product_category_id,
pc.product_category_name

FROM farmers_market.product AS p
LEFT JOIN farmers_market.product_category AS pc
ON p.product_category_id = pc.product_category_id
ORDER BY pc.product_category_name, p.product_name;

Breaking down Left JOIN :

●​ The Left JOIN indicates that we want all rows from the product
table (which is listed on the left side of the JOIN keyword) and ​

●​ only the associated rows from the product_category table. So, if a
category is not associated with any products, it will not be

included in the results.​

●​ If a product were without a category, it would be included in the
results, with the fields on the product_category side being NULL.​

●​ The ON part of the JOIN clause tells the query to match up the
rows in the two tables using each table's values in the
product_category_id field. ​

●​ We can specify which table each column is from since it’s possible
to have identically named columns in different tables.

Right JOIN

In a RIGHT JOIN, all of the rows from the “right table” are returned,
along with only the matching rows from the “left table,” using the fields
specified in the ON part of the query.

To write the same query (the one we saw earlier) using a RIGHT JOIN,
you can simply reverse the order of the tables and use a RIGHT JOIN
instead of a LEFT JOIN.

Query:

SELECT
 p.product_id,
 p.product_name,
 pc.product_category_id,
 pc.product_category_name
FROM farmers_market.product_category AS pc
RIGHT JOIN farmers_market.product AS p
ON p.product_category_id = pc.product_category_id
ORDER BY pc.product_category_name, p.product_name;

●​ In this query, the "product_category" table is on the left side of the
RIGHT JOIN, and the "product" table is on the right side.

●​ The rest of the query remains the same as in your original LEFT
JOIN query.

●​ This RIGHT JOIN query will return all product categories, including
those without associated products, and it will display products
when they have a matching category.

Question: Find out the customers who are either new to
the market or have deleted their account from the
market.

What information is required to answer this?

1.​ For customers who are new to the market, we’d need the
`customer` table because that’s where the new customers are
(those who haven’t made any purchase yet).

2.​ For the customers that have left, they can only be found in the
purchase history i.e. the `customer_purchases` table as their
records are deleted from the `customer` table.

__

Quiz - 2

Q.Any result that is achieved with right join can also be achieved
with left join by just swapping the tables

a)​True - correct
b)​False

Keyword: with the right join
Select Instructor: Sai Nischitha Thatha
__

Quiz - 3

Q. Which join is used to return the book list which only Jim has
read (Jim: Table A and Vinny: table B)

a)​inner
b)​Left - correct
c)​Right
d)​outer

Keyword: Which join is used
Select Instructor: Sai Nischitha Thatha
__

Q1: Get all the customers who haven’t purchased anything
from the market yet.

What type of JOIN should we use here?
Answer: Left JOIN

Query:

SELECT *
 FROM farmers_market.customer AS c
 LEFT JOIN farmers_market.customer_purchases AS cp
 ON c.customer_id = cp.customer_id;

●​ There can be customers without any purchases.
●​ The customer table has details of all the customers regardless of

their purchase history.
●​ Since we did a LEFT JOIN, we’re getting a list of all customers, and

their associated purchases, if there are any.
●​ Customers with multiple purchases will show up in the output

multiple times for each item purchased.
●​ Customers without purchases will have NULL values in all fields

displayed from the customer_purchases table.

To get the list of customers that did not purchase anything.

Query 1:

SELECT c.* -- select columns from customer table only
 FROM customer AS c
 LEFT JOIN customer_purchases AS cp
 ON c.customer_id = cp.customer_id
 WHERE cp.customer_id IS NULL;

●​ Here we only selected columns from the customer table, using c.*,
●​ because all of the columns on the customer_purchases side of the

relationship will be NULL (since we’re filtering to NULL
customer_id, and there are no purchases in the
customer_purchases table without a customer_id, since it is a
required field).

Q2: Get all the customers who have deleted their account
from the market.

What type of JOIN should we use here?
Answer: Right JOIN

Query:

SELECT *
 FROM farmers_market.customer AS c
 RIGHT JOIN farmers_market.customer_purchases AS cp
 ON c.customer_id = cp.customer_id

To get the list of customers who deleted their account.

Query 2:

SELECT cp.* -- select columns from customer_purchases table
 FROM customer AS c
 RIGHT JOIN customer_purchases AS cp
 ON c.customer_id = cp.customer_id
 WHERE c.customer_id IS NULL;

●​ Here we only selected columns from the customer_purchases
table, using cp.*,

●​ because all of the columns on the customer side of the
relationship will be NULL (since we’re filtering to NULL
customer_id, and there are no customers in the customers table
without a customer_id).

Now let’s combine these two queries i.e. Query 1 & Query 2, to obtain the
final solution query.

Soln using UNION -

SELECT c.customer_id,
 "New Customer" AS customer_type
FROM farmers_market.customers AS c
LEFT JOIN farmers_market.customer_purchases AS cp
ON c.customer_id = cp.customer_id
WHERE cp.customer_id IS NULL
UNION DISTINCT
SELECT cp.customer_id,
 "Deleted Customer" AS customer_type
FROM farmers_market.customers AS c
RIGHT JOIN farmers_market.customer_purchases AS cp
ON c.customer_id = cp.customer_id
WHERE c.customer_id IS NULL;

Output:

​

	Joins
	Agenda
	Problem Statement

	So far…
	Question: Get details of all vendors selling products along with the name of each product they sell and the quantity of that product present in their inventory?
	Question: List all the products along with their product category name.
	Now, there are multiple ways of joining these tables.

	Question: Get a list of customers' zip codes for customers who made a purchase on 2019-04-06.
	1.​For customers who are new to the market, we’d need the `customer` table because that’s where the new customers are (those who haven’t made any purchase yet).
	2.​For the customers that have left, they can only be found in the purchase history i.e. the `customer_purchases` table as their records are deleted from the `customer` table.
	
	Q1: Get all the customers who haven’t purchased anything from the market yet.
	Q2: Get all the customers who have deleted their account from the market.

